Подобные работы

Система запалення

echo "Система запалення складається із джерела струму, котушки запалювання, переривника, розподільника, конденсатора, свічки, вмикача запалювання, проводів високої і проводів низької напруги. Схема за

Электропривод механизма передвижения

echo "Графические работы : Электрическая принципиальная схема привода тележки; Кинематическая схема механизма тележки; Задание выдано: __________ Срок окончания и сдачи: 05.04.99 Руководитель Рыжаков

Сертификация в зарубежных странах

echo "Программно-целевое планирование охватывает производство и транспортировку топлива, снабжение электроэнергией, применение ядерной, солнечной и других видов энергии. Значительно меньше внимания у

Ходова частина

echo "Маточини передніх коліс установлюють на поворотних цапфах на роликових конічних або кулькових радіально-опорних підшипниках і кріплять гайки з шплінтами. Рама автомобіля 1– передній буфер; 2 – п

Автоматика и автоматизация производственных процессов

echo "Результатами составления функциональных схем являются: 1.Выбор методов измерения технологических параметров. 2.Выбор основных технических средств автоматизации, наиболее полно отвечающих предъяв

Технологический и прочностной расчёт футеровок ёмкостного цилиндрического оборудования

echo "Введение. Напряжённое состояние системы металл-футеровка в футерованных аппаратах оказывает большое влияние на работоспособность всей конструкции в целом. Вследствие различий физико-механическ

Системи Двигуна

echo "Серцевина складається латунних трубок, кінці яких впаяні у верхній і нижній бачки. Між трубками встановлено латунні пластини, які збільшують поверхню охолодження серцевини і водночас підвищують

Светолокационный измерительный преобразователь расстояния до нижней границы облаков

echo "Многие отрасли промышленности, сельского хозяйства в большой степени зависят от четкости, оперативности работы и надежности прогнозов федеральной системы наблюдений и контроля за окружающей сред

Автоматизация редукционно-охладительной установки

Автоматизация редукционно-охладительной установки

Автоматизация приводит к улучшению показателей эффективности производства, улучшению качества, увеличению количества и снижению себестоимости выпускаемой продукции.

Высокие темпы развития промышленности неразрывно связанно с проведением автоматизации.

Задачи, которые решаются при автоматизации современных производств, весьма сложны и требуют от специалистов знания не только устройства различных приборов, но и общих принципов составления систем автоматического управления.

Внедрение АСУ в производство обеспечивает: сокращение потерь от брака и отходов, уменьшение численности основных рабочих, снижение капитальных затрат на строительство зданий, увеличение межремонтных сроков работы оборудования.

Благодаря автоматизации производства тяжелый труд рабочих заменяется на более легкий. Что значительно увеличивает производительность труда и уменьшает трудоемкость.

Данный курсовой проект показывает один из возможных способов автоматизации редукционно-охладительной установки. Это позволяет производить контроль и регулирование из кабины оператора. В итоге автоматизации значительно облегчится труд персонала, обслуживающего редакционно-охладительную установку.

Оператор после автоматизации может, находясь у щита следить за всеми протекающими в печи процессами. А также может контролировать процессы регулирования и по мере необходимости вносить ручные воздействия. 2. Краткое описание технологического процесса.

Охлаждение - это сложный и ответственный технологический процесс. От правильности его проведения зависит качество продукции.

Промышленные предприятия потребляют большое количество тепла на технологические нужды (нагрев технологических сред, сушка продуктов технологического процесса), а также на отопление и горячее водоснабжение.

Источниками тепла являются пар или горячая вода от собственных котельных или от внешних источников. В случае питания предприятия от внешних источников при вводе теплосетей устанавливают тепловые пункты, в которых обычно предусматривают редукционно-охлодительные установки (РОУ), которые относятся к теплообменным устройствам.

Редукционно-охладительная установка предназначена для р едуцирования давления и снижение температуры пара. Она относится к теплообменным устройствам.

Теплообменными устройствами называют устройства, предназначенные для передачи тепла от одной рабочей среды к другой.

Технологическое назначение теплообменных устройств чрезвычайно разнообразно, поэтому в промышленной технике отмечается большое обилие типов и конструкций редукционно –охладительной установки.

Процесс теплообмена характеризуется уравнением, которое чаще всего служит для определения поверхности теплообмена F . Q = k ( t 1 – t 2 ) F ккал/час, где k - коэффициент теплопередачи, ккал/м2 час град; F - поверхность теплообмена, м2. РОУ применяется на тепловых и атомных электростанций для сброса избытка пара в пусковых и аварийных режимах, а также в тех случаях, когда потребность в паре низких параметров покрывается из источника с более высокими параметрами пара.

Основные принципы управления процессом снижения температуры и давления рассматриваются в функциональной схеме.

Основными параметрами этого процесса являются характеристики пара на выходе РОУ. Постепенное снижение давления обеспечивается с помощью дросселя постоянного сечения, который обычно устанавливается за клапаном, что уменьшает шум. РОУ состоит из редукционного клапана и пароохладителя.

Редукционный клапан - это устройство, автоматически перепускающее жидкость или газ из полости высокого давления в полость более низкого давления с поддержанием постоянного давления в одной из этих полостей.

Пароохладитель – это устройство, с помощью которого понижается температура перегретого пара перед турбинной или котлом. При изменении режима работы температура может меняться в широких пределах, и тогда необходимо для предотвращения чрезмерного перегрева пароперегревателя охладить его.

Охлаждение пара достигается путем отвода от пара тепла питательной водой, которая непосредственно впрыскивается в аппарат. Для этой цели часто принимают конденсат. В системах теплоснабжения имеются так же станции сброса и перекачки конденсата, оборудованные баками для сбора его и насосами для перекачки уже собранного конденсата на ТЭЦ или в катальную 3. Выбор регулируемых величин и каналов внесения регулирующих воздействий.

Процессы протекают в РОУ с очень большими скоростями и в ручную ими управлять невозможно.

Основным показателем эффективности работы редукционно-охладительной установки является температура и давления пара после установки. Цель управления подержание этих параметров на определенном значении. На объект управления будут действовать следующие возмущающие воздействия: 1. Изменение расходов пара и охлаждающего агента. 2. Изменение температур пара и охлаждающего агента.

Повлиять на эти параметры нельзя, так как они определяются предыдущим технологическим процессом. 3. Изменение удельной теплоемкости пара и охлаждающего агента. 4. Изменение давления пара на входе установки. 5. Изменение состояния труб аппарата (коррозия, отложение солей). Изменить нельзя, но можно периодически чистить. 6. Изменение параметров окружающей среды.

Повлиять нельзя. Чтобы при наличии возмущающих воздействий цель управления была достигнута и были стабилизированы параметры пара, следует в качестве главной регулируемой величины принять показатель эффективности, а регулирующее воздействие вносить изменением расхода конденсата, с помощью регулятора системы «Каскад», типа РС29 (поз.5-4) и исполнительного механизма, типа МЭО (поз.5-6). Также подлежит регулированию давления пара на выходе установки, которое осуществляется с помощью регулятора типа РС29 (поз.3-3) и исполнительного механизма типа МЭО (поз.3-5). Температура и давление после РОУ является важными технологическими параметрами.

Поэтому они подлежат регулированию, т.к. из-за них зависит работа РОУ. 4. Выбор контролируемых величин. При выборе контролируемых величия необходимо руководствоваться тем, что при минимальном их числе обеспечивалось наиболее полное представление о процессе.

Контролю подлежат прежде всего те параметры, значение которых облегчает пуск, наладку и ведение технологического процесса. Для осуществления наиболее оперативного управления, проведения пуско-наладочных работ и обеспечения необходимых технико-экономических показателей необходимо обеспечить контроль наиболее важных параметров процесса. К этим параметрам относятся: 1. Давление пара перед РОУ (поз.1-1); 2. Температура пара перед РОУ (поз.2-1); 3. Расход конденсата (поз.4-1). Которые измеряются и регистрируются с помощью вторичных электрических приборов, типа «Диск – 250», которые устанавливаются на щите оператора.

Знание значений этих параметров позволяет судить о том, как идет процесс и скорректировать задание при выходе этих параметров за рамки нормы, т.к. изменения являются возмущающими воздействиями, которые могут вывести систему из равновесия.

Данные контролируемые параметры не являются основными, но их необходимо знать для получения объективной информации о ходе технологического процесса. А также для обеспечения нормального режима работы РОУ и проведения необходимых пуско-наладочных работ и обеспечение необходимых технико-экономических показателей. 5. Выбор средств автоматизации. В связи с тем, что процессы протекают в РОУ с очень большими скоростями, надо выбирать приборы, запаздывание показаний которых как можно меньше.

Средства автоматизации, с помощью которых осуществляется управление процессом, должны быть выбраны технически грамотно и экономически обоснованно. При выборе средств автоматизации в первую очередь принимают во внимание следующие факторы: 1. Взрыво - и пожароопасность объекта (повышенное давление 0,6 МПа ); 2. Агрессивность среды; 3. Число параметров, участвующих в управлении, и их физические и химические свойства; 4. Требования к качеству контроля и регулирования; 5. Уровень температур; 6. Расстояние между технологическим объектом и щитом управления (сравнительно не велико); 7. Точность используемых средств измерения (электрические вторичные приборы более точные). Исходя из всего вышеперечисленного, используются электрические приборы системы «Каскад», которые обладают высоким классом точности и с помощью их мы сможем достаточно верно управлять системой автоматизации на процессы, протекающие в РОУ. В данной курсовой работе нужно контролировать расход конденсата.

Существует несколько способов измерения расхода: - измерение расходомерами постоянного перепада давления; - расходомерами переменного перепада давления; - электромагнитными расходомерами (индукционными). Последний способ не подходит из-за больших габаритов прибора, а следовательно, его дороговизны.

Первый способ использования не устраивает нас, т.к. ротаметрами можно измерять расход только газов и жидкостей (прозрачных), а также небольшой предел измерения. Для данного курсового проекта лучше всего подходит второй способ. В качестве первичного преобразователя используется диафрагма типа ДК-16 измерения и различных диаметров. На функциональной схеме обозначена позицией 4-1. Сигналы с диафрагмами поступают на дифманометр - расходомер типа ДМЕР-М (поз. 4-2). На выходе у этого типа дифманометров стандартный электрический сигнал от 0 до 5А, в котором работают все вторичные электрические приборы. В данном проекте нужно измерять температуру до и после РОУ. Существует несколько способов измерения температуры. Нужно подобрать наиболее подходящий для данного курсового проекта.

Температуру можно измерить с помощью следующих средств: - термометров расширения; - манометрическими термометрами; - пирометрами; - термометрами сопротивления; - термоэлектрическими термометрами.

Первые два способа не подходят из-за небольших пределов измерения, сложности дистанционной передачи сигнала от места отбора согнала до щита оператора.

Пирометры не годятся, т.к. можно только контролировать параметр, но нет возможности регулирования, а также пирометры применяются для измерения высоких температур.

Четвертый способ не подходит по экономическим соображениям (медными термометрами сопротивления нельзя измерить из-за небольшого предела измерения, а платиновые дорогие). Наиболее подходящий последний способ, т.к. используемые термоэлектрические термометры имеют удовлетворяющий запросам предел измерения и дешевле платиновых термометров сопротивления. Для данного проекта подходят термопары, типа ТХК-1172П, градуировки ХК( L ) (поз.2-1, 5-1). Пределы измерения 0-500*С. Т.к. выходной сигнал у термопары не стандартный, то нужно использовать нормирующий преобразователь типа Ш 79 (поз.2-2,5-2). В данном курсовом проекте необходимо стабилизировать давление.

Измерить давление можно следующими средствами: - лсидкостными трубными манометрами; - деформационными манометрами; - грузопоршневыми манометрами; - электрическими манометрами.

Первый способ не подходит из-за невозможности дистанционной передачи сигнала, при увеличении давления размеры трубного манометра возрастают (применяются для измерения невысоких давлений) и т.д.

Электрические манометры нас устраивают в связи с тем, что на выходе у этого типа манометров электрический сигнал, что подходит для данного курсового проекта. В качестве манометра взяли преобразователь типа «Сапфир 22ДИ» (поз.1-1,3-1). Для регулирования давления и температуры пара после РОУ используются регуляторы типа РС29 (поз.3-3, 5-4). Эти регуляторы надежны в эксплуатации и обеспечивают достаточно высокое регулирование.

Регуляторы выпускаются в комплекте с усилителями типа У29. Регулятор смонтирован на щите и через бесконтактный реверсивный усилитель типа ПБР (поз. 3-4, 5-5) управляет исполнительным механизмом типа МЭО (поз. 3-5, 5-6), двигатель которого имеет магнитный тормоз, что позволяет уменьшить инерционность хода двигателя после отключения. Для улучшения динамических характеристик системы, заключающихся в инерционности воспринимающих элементов регулятора температуры в схеме предусмотрен ввод сигнала по изменению положения исполнительного механизма. 6. Общее описание работы выбранной системы контроля и регулирования.

Выбранная система контроля и регулирования работает следующем образом: 1. Контроль давления пара перед РОУ: В качестве первичного преобразователя используется преобразователь давления типа «Сапфир-22ДИ-2060» (поз. 1-1), который имеет выходной сигнал от 0 до 5 мА . Этот сигнал воспринимает вторичный регистрирующий прибор типа «Диск250-1121» (поз.1-2). 2. Контроль температуры пара перед РОУ: Первичным преобразователем данного контура является термоэлектрический термометр типа «ТХК-1172(П)» гр.ХК ( L ) (поз.2-1). Т.к. выход у него не является стандартным, то надо использовать нормирующий преобразователь типа «Ш-79» (поз. 2-2), который преобразует нестандартный сигнал термопары в стандартный от 0 до 5 мА . Этот сигнал воспринимает вторичный регистрирующий прибор типа «Диск250-1121» (поз. 2-3). 3. Регулирование давления редуцированного пара после РОУ: В качестве первичного преобразователя используется преобразователь давления типа «Сапфир-22ДИ-2060» (поз. 3-1), который имеет выходной сигнал от 0 до 5 мА . Этот сигнал воспринимает вторичный регистрирующий прибор типа «Диск250-1121» (поз.3-2). Этот прибор имеет выход со стандартным выходным сигналом от 0 до 5 мА , к которому подключается регулятор системы «Контур 2» типа «РС29» (поз. 3-3). Регулятор выпускается в комплекте с усилителем типа «У29». При отклонении параметра от заданного значения (0,7Мпа) регулятор включает катушки пускателя типа «ПБР-2М» (поз.3-4), который управляет исполнительным механизмом типа «МЭО-16/10-0,25-82» (поз. 3-5), который устанавливается на трубопроводе перед РОУ. 4. Контроль расхода конденсата: Первичный преобразователь это камерная диафрагма типа «ДК6-90» (поз. 4-1), которая работает вместе с дифманометром - расходомерам типа «ДМЭР-М» (поз. 4-2). Это дифманометр имеет стандартный выходной сигнал от 0 до 5мА. Регистрация ведется с помощью вторичного регистрирующего прибора типа «Диск250-1121» (поз. 4-3). 5. Регулирование температуры редуцированного пара (200*С): Оно введется аналогично регулированию давления.