Лазерная безопасностьСветовой диаметр зрачка при расчете МДУ облучения принимают обычно равным 7 мм. Это не всегда соответствует действительности. Например, при большой светлоте ( физиологическая оценка яркости ) фона — из-за световой адаптации, в пожилом возрасте — из-за уменьшения чувствительности световых рецепторов. 1.1.1. МДУ прямого облучения сетчатки Кроме длины волны l , необходимо учитывать также длительность воздействия светового излучения. При очень коротких импульсах ( когда не успевают сработать механизмы теплопроводности в области сетчатки ) нормируют плотность энергии для видимого излучения ( 0.4 l D t 10 -5 c МДУ облучения роговицы глаза составляет 5 10 -3 Дж/м 2 ; для ИК-излучения ( 1.05 l 10 -5 D t 10 -5 с — на порядок больше, то есть 5 10 -2 Дж/м 2 . Если длительность импульса превышает 20 мкс для видимого и 20 50 мкс для ближнего ( до 1.4 мкм ) излучения, то нормируют в первом приближении плотность мощности: для видимого излучения МДУ составляет 18 D t 0.75 Вт/м 2 ; для ИК-излучения — почти порядок больше, то есть 90 D t 0.75 Вт/м 2 . Во всех рассматриваемых далее случаях переходная область спектра — от темно-красного ( l >700 нм ) до полностью невидимого ближнего ИК-излучения ( l 4 =10 ( l -700)/500 . Приведенные данные по МДУ охватывают область наиболее критических значений параметров облучения зрачка глаза, когда в интервале от 10 -9 до 10 с причиной повреждения сетчатки является тепловое действие сфокусированного света при прямом наблюдении лазерного пучка, тогда как сверхкороткие лазерные импульсы вызывают в основном термоакустическое воздействие — протоплазма клеток из-за быстрого разогрева закипает и разрывает оболочку. В этом случае нормируют плотность мощности: для видимого излучения МДУ составляет 5 10 6 Вт/м 2 , для ИК-излучения — 5 10 7 Вт/м 2 . Длительное ( D t>10 с ) прямое воздействие лазерного излучения на сетчатку приводит в основном к фотохимическим процессам ее разрушения. Чтобы избежать этого (как и в случае сверхкоротких импульсов), нормируют энергетическую освещенность (экспозицию). Для зеленого ( l =550 нм) и более коротковолнового ( l >400 нм) видимого света МДУ составляет 100 Дж/м 2 . Что касается 'теплых' цветов (550 l 2 =10 0.02( l -500)+1 c), и в этом случае МДУ нужно уменьшить в С 3 раз (C 3 =10 0.015( l -550) ). Сверхдлительное ( D t>10 3 10 4 c) прямое воздействие лазерного излучения характеризуется малым значением МДУ, а именно 0.01 Вт/м 2 для сине-зеленого (0.4 l l 0.015( l -500)+2 Вт/м 2 . В случае ИК излучения переход от экспозиционного к мощностному ограничению (когда существенную роль играют регенерационные процессы, компенсирующие фотохимическое разрушение) осуществляется при D t>10 c: для 1.05 l 2 ; для l >700 нм (темно-красное излучение) и l 10 ( l -700)/500 Вт/м 2 . На перечисленные МДУ облучения ориентируются при однократном воздействии на глаз прямого лазерного излучения, фокусируемого хрусталиком в очень незначительное пятно на сетчатке. При наличии последовательности импульсов не только ни один из них, но и усредненная облученность не должны превышать МДУ. При усреднении воздействия последовательности импульсов с длительностью D t 1 Гц МДУ одиночного импульса должен быть уменьшен в С 5 раз: (1.1) Если длительность отдельных импульсов D t в последовательности превышает 10 мкс ( а частота следования f>1 Гц), то для импульса длительностью N D t за ограничение облученности принимают (1/N)-ю часть МДУ. Наиболее сложно определить МДУ для повторяющихся серий, состоящих из определенного числа импульсов. Когда в серии не более 10 импульсов, ее приравнивают к одному эквивалентному импульсу. При этом: 1) если D t серии меньше 10 мкс, то за длительность эквивалентного импульса принимают длительность самого короткого импульса в серии, а за энергетическое воздействие — суммарное (полное) энергетическое воздействие всей серии; 2) если D t серии больше 10 мкс, то за длительность эквивалентного импульса принимают суммарную длительность парциальных импульсов, а за энергетическое воздействие — суммарное энергетическое воздействие всей серии. Если в серии более 10 импульсов, то МДУ рассчитывают как для одного, якобы непрерывного импульса, охватывающего всю последовательность. 1.1.2. МДУ для наружных покровов глаз человека Невидимое УФ (0.2 l l l l Плотность мощности для сверхкоротких (менее 1 нс) импульсов почти одинакова в обоих диапазонах: 30 ГВт/м 2 в УФ области и 100 ГВт/м 2 в ИК области (1.4 мкм l При больших временах воздействия ситуация наиболее проста для жесткого (200 l 2 , вплоть до длительностей облучения 30000 с, то есть свыше 8 часов. Более сложна система задания МДУ для узкого участка УФ излучения с 302.5 l D t 2 =10 ( l -295)/5 Дж/м 2 . В области импульсных воздействий (1 нс D t D t>T 1 =10 ( l -295)/5 c; если D t 1 , то МДУ не зависит от длины волны и составляет С 1 =5600( D t) 0.75 Дж/м 2 . МДУ для ближней УФ области (315 l (1 нс D t 1 =5600( D t) 0.25 Дж/м 2 , плавно переходящее в 10 КДж/м 2 для времени облучения от 10 до 1000 с; если длительность облучения превышает 1000 с, то нормируют плотность мощности, и МДУ равно 10 Вт/м 2 . В ИК области МДУ облучения наружных покровов почти не зависит от длины волны и составляет: для сверхкоротких ( D t 2 ; для гигантских ( 1 нс D t 2 ; для остальных (100 нс D t D t) 0.25 Дж/м 2 . Плотность мощности при непрерывном облучении (10 с D t 2 . Надо отметить, что такие значения справедливы и для дальней ИК области (0.1 l 1.1.3. Представление МДУ облучения как поверхности в координатах l - D t В 825-й публикации МЭК полностью, хотя и не всегда с достаточно высокой точностью, определены МДУ облучения роговой оболочки глаза человека прямым (то есть направленным непосредственно из оптической системы, а не рассеянным на каких-либо шероховатых поверхностях) лазерным излучением. Для удобства практического применения эти рекомендации МЭК представлены в виде таблицы 1.1. В результате, во первых, появляется возможность достаточно просто (хотя и приближенно) определить численные значения МДУ при прямом облучении глаза человека лазерным излучением. При измерении следует лишь помнить следующие рекомендации МЭК по пространственному усреднению облученности: для 0.2 l 1 мм; для 0.4 l 7 мм (что соответствует зрачку глаза при темновой адаптации); для 1.4 l 1 мм; для 100 мкм l 11 мм. Во вторых, таблица 1.1 свидетельствует о том, что в разных спектральных поддиапазонах лазерное воздействие частично аддитивно. Эта ситуация относится к двухи более волновым лазерам, в основном, к лазерным приборам и установкам, в которых используется лазерное излучение разных длин волн. В соответствии с рекомендацией МЭК весь диапазон длин волн лазерного излучения делят на четыре поддиапазона, внутри которых лазерное излучение полностью аддитивно (как для глаз: так и для кожных покровов): 1. поддиапазон — УФ-С и УФ-В, 200 l 2. поддиапазон — УФ-А, 315 l 3. поддиапазон — весь видимый и ИК-А, 0.4 l 4. поддиапазон — ИК-В и ИК-С, 1.4 l Кроме того, всегда суммируют воздействия облучений 2-го и 4-го поддиапазонов. Аналогичное суммирование проводят и при совместном воздействии на кожные покровы лазерных излучений 2-го и 3-го поддиапазонов. Естественно, что принимать во внимание эффект аддитивного воздействия имеет смысл лишь при близких к МДУ значениях облучения для каждой из генерируемых длин волн. К сожалению, 825-я публикация МЭК не дает аналитического выражения для определения МДУ аддитивного облучения, а лишь указывает на необходимость особой осторожности, если длительности воздействия существенно различаются (например, совместное действие импульсного и непрерывного излучений). В случае, если длительности импульсов или время экспозиции соизмеримы (имеют один порядок), то полагают, что парциальное (на одной длине волны) облучение пропорционально МДУ для данного излучения, то есть суммарное относительное облучение не должно превышать единицы: И, наконец, МЭК настоятельно напоминает об опасности любого облучения, в том числе лазерного, подчеркивая, что МДУ является не порогом безопасности, а лишь усредненным значением (определенным на основе многочисленных экспериментов) уровня опасности повреждения органов зрения (и кожного покрова) человека. Таблица 1.1 МДУ прямого облучения глаз человека
Последняя величина (эффективный угол зрения) во многом зависит от длительности облучения и (для коротких импульсов) от длины волны. Все это видно из рисунка 2, где представлена кусочно-линейная аппроксимация a = a ( D t) в двойном логарифмическом масштабе.
Таблица 1.2 МДУ облучения глаз человека рассеянным лазерным излучением
Однако остается возможность поражения кожных покровов (например, рук при обслуживании лазерной технологической установки). Что касается МДУ лазерного облучения для кожных покровов человека, то их значения, по рекомендации МЭК, отличаются от значений, рассмотренных ранее для глаз, лишь в области видимого и ближнего ИК излучения ( l 1 мм для всех длин волн менее 0.1 мм. Облучение в дальней ИК области (0.1 l 11 мм. Таким образом, при любом лазерном излучении, пользуясь данными таблиц 1.1 — 1.3, можно легко определить МДУ облучения, позволяющий избежать органических повреждений глаз и кожных покровов человека. Применение того или иного способа обеспечения безопасности человека при лазерном излучении зависит от стадии изготовления или эксплуатации лазерного прибора. На защиту пользователя от лазерного облучения, превышающего МДУ, нацелены рекомендуемые МЭК конструктивные мероприятия, необходимые при изготовлении лазерных приборов. Поскольку эти мероприятия в той или иной степени обязательны для всех изготовителей лазерных приборов, целесообразно рассмотреть их более подробно. 2. Требования к изготовителям лазерных приборов в связи с обеспечением безопасности пользователей МЭК рекомендует в связи с унификацией требований к конструкциям лазерных приборов разделять эти приборы на четыре класса с точки зрения опасности лазерного излучения для пользователей. 2.1. Лазерные излучатели класса 1 Наиболее безопасными как по своей природе (МДУ облучения никак не может быть превышен), так и по конструктивному исполнению являются лазерные приборы класса 1. В связи с таким двойным подходом допустимые пределы излучения (ДПИ) лазерных приборов класса 1 в спектральной области от 0.4 до 1.4 мкм, для которой возможно как точечное, так и протяженное повреждение сетчатки, характеризуются значениями в двух аспектах — энергетическом (в ваттах или джоулях) и яркостном. Соответствующие значения приведены в таблице 2.1 (кроме УФ излучения, а также ИК излучения от 1.4 мкм) Таблица 2.1 ДПИ для лазеров класса 1
Однако при соблюдении определенных условий — удалении глаза более чем на 13 см от рассеивателя и времени воздействия не более 10 с — допустимо наблюдение диффузно рассеянного излучения. Поэтому непрерывная мощность таких лазеров не может превышать 0.5 Вт, а энергетическая экспозиция — 100 кДж/м 2 . Остальные значения ДПИ для лазеров подкласса 3Б приведены в таблице 2.3. Таблица 2.3 ДПИ для лазеров подкласса 3Б
Значения ДПИ в данном случае превышают значения, принятые для подкласса 3Б. Работа с лазерными излучателями класса 4 требует обязательного соблюдения соответствующих защитных мер. 2.5. Особенности использования ДПИ при классификации лазерных излучателей Лазерные излучатели, генерирующие на двух или более длинах волн неаддитивно, классифицируют по наибольшему классу опасности для каждой из них. В случае попадания генерируемых волн в один поддиапазон (аддитивные воздействия) поступают аналогично определению МДУ, то есть сумма относительных излучений, нормированных по ДПИ для данной длины волны, не должна превышать единицы: (И S ) отн = И отн ( l 1 ) + И отн ( l 1 ) + ... = И отн ( l 1 ) / ДПИ( l 1 ) + И отн ( l 1 ) / ДПИ( l 2 ) + ... Если, например, через какое-либо отверстие корпуса защитного кожуха, или при введении оптического зонда, или в случае отказа блокировок лазерное излучение может попасть на человека — его глаза или только на кожные покровы, то классификацию осуществляют с учетом и этого дополнительного облучения. Классификация лазерных приборов, излучающих повторяющиеся импульсы, осуществляют следующим образом. Последовательно определяют класс опасности для: 1. наиболее мощного импульса в серии; 2. средней мощности импульсов в серии, действующих якобы как один импульс с длительностью, равной длительности серии; 3. наиболее мощного импульса последовательности из n импульсов (за время проведения классификации) при мгновенной частоте повторения импульсов (определяемой по самому короткому интервалу) f>1 Гц. Однако при длительности отдельных импульсов D t 5 ; при D t>10 мкс одиночным считают импульс длительностью T= D t n и значение его вклада уменьшают в n раз; 4. наиболее мощного эквивалентного импульса, представляющего собой последовательность (группу) из n D t гр D t гр >10 мкс). В результате лазерному прибору присваивают наиболее высокий класс опасности из вычисленных в пунктах 1 — 4. Если при определении ДПИ для эквивалентного импульса требования будут более жесткими, то, следуя пунктам 1 — 3, можно немного уменьшить получаемые значения. Причем если n>10, то нужно следовать пункту 3. Кроме того, 825-й публикацией МЭК предусмотрен целый ряд дополнительных организационно-технических мероприятий, обязательных для изготовителя, по обеспечению безопасности лазерных изделий. 3. Технико-гигиеническая оценка лазерных изделий в России В нашей стране на базе проведенных комплексных исследований и современных представлений о влиянии лазерного излучения на организм человека разработан и утвержден ряд нормативных документов, обеспечивающих безопасную эксплуатацию лазерных изделий. Эти документы устанавливают единую систему обеспечения лазерной безопасности. В такую систему входят: технические средства снижения опасных и вредных производственных факторов, организационные мероприятия, контроль условий труда на лазерных установках. В современной отечественной научно-технической и нормативной литературе дано несколько вариантов классификации лазерных изделий. С позиции обеспечения лазерной безопасности их классифицируют по основным физико-техническим параметрам и степени опасности генерируемого излучения. В зависимости от конструкции лазера и конкретных условий его эксплуатации обслуживающий его персонал может быть подвержен воздействию опасных и вредных производственных факторов, перечень которых приведен в ГОСТ 12.1.040-83. Уровни опасных и вредных производственных факторов на рабочем месте не должны превышать значений, установленных по электробезопасности, взрывоопасности, шуму, уровням ионизирующего излучения, концентрации токсических веществ и др. 3.1. Классы опасности лазерного излучения по СНиП 5804-91 Степень воздействия лазерного излучения на оператора зависит от физико-технических характеристик лазера — плотности мощности (энергии излучения), длины волны, времени облучения, длительности и периодичности импульсов, площади облучаемой поверхности. Биологический эффект лазерного облучения зависит как от вида воздействия излучения на ткани организма (тепловое, фотохимическое), так и от биологических и физико-химических особенностей самих тканей и органов. Наиболее опасно лазерное излучение с длиной волны: 380 1400 нм — для сетчатки глаза, 180 380 нм и свыше 1400 нм — для передних сред глаза, 180 10 5 нм (т.е. во всем рассматриваемом диапазоне) — для кожи. Нашими гигиенистами выдвинуты требования, в соответствии с которыми в основу проектирования, разработки и эксплуатации лазерной техники должен быть положен принцип исключения воздействия на человека (кроме лечебных целей) лазерного излучения, как прямого, так и зеркально ил диффузно отраженного. В соответствии со СНиП 5804-91 лазерные изделия по степени опасности генерируемого излучения подразделяют на 4 класса. При этом класс опасности лазерного изделия определяется классом опасности используемого в нем лазера. Классификацию лазеров с точки зрения безопасности проводит предприятие-изготовитель путем сравнения выходных характеристик излучения с предельно допустимыми уровнями (ПДУ) при однократном воздействии. Определяя принадлежность лазерного изделия к тому или иному классу по степени опасности лазерного излучения, необходимо учитывать воздействие прямого или отраженного лазерного пучка на глаза и кожу человека и пространственные характеристики лазерного излучения (при этом различают коллимированное излучение, то есть заключенное в ограниченном телесном угле, и неколлимированное, то есть рассеянное или диффузно отраженное). Использование дополнительных оптических систем не входит в понятие 'коллимация', а оговаривается отдельно. Лазерные изделия с точки зрения техники безопасности классифицируют в основном по степени опасности генерируемого излучения. Установлены следующие 4 класса лазеров: 1. к нему относят полностью безопасные лазеры, выходное излучение которых не представляет опасности для глаз и кожи человека; 2. к нему относят лазеры, выходное излучение которых представляет опасность при облучении кожи или глаз человека коллимированным пучком. В то же время диффузно отраженное излучение лазеров этого класса безопасно как для кожи, так и для глаз; 3. к нему относят лазерные устройства, работающие в видимой области спектра и выходное излучение которых представляет опасность при облучении как глаз (коллимированным и диффузно отраженным излучением на расстоянии менее 10 см от отражающей поверхности), так и кожи (только коллимированным пучком); 4. наиболее опасный — к нему относят лазерные устройства, даже диффузно отраженное излучение которых представляет опасность для глаз и кожи на расстоянии менее 10 см. При определении класса опасности лазерного излучения учитываются три спектральных диапазона. Таблица 3.1
Нормируемыми параметрами с точки зрения опасности лазерного излучения являются энергия W и мощность P излучения, прошедшего ограничивающую апертуру диаметрами d а =1.1 мм (в спектральных диапазонах I и II) и d а =7 мм (в диапазоне II); энергетическая экспозиция H и облученность E, усредненные по ограничивающей апертуре: H=W/S a ; E=P/S a (3.1) где S a — площадь ограничивающей апертуры. Угловой размер l протяженного источника излучения определяется по формуле (3.2) где S 0 — площадь источника, l — расстояние от точки наблюдения до источника, Q — угол между нормалью к поверхности источника и направлением визирования. В случае протяженного источника излучения вводят дополнительный коэффициент В ³ 1 для всего диапазона возможных интервалов облучения при l > l пред — углового размере точечного источника. ПДУ лазерного излучения устанавливают для двух условий — однократного и хронического облучения. Под хроническим понимают 'систематически повторяющееся воздействие, которому подвергаются люди, профессионально связанные с лазерным излучением'. ПДУ при этом определяют как: 1) уровни лазерного излучения, при которых 'существует незначительная вероятность возникновения обратимых отклонений в организме' человека; 2) уровни излучения, которые 'при работе установленной продолжительности в течение всего трудового стажа не приводят к травме (повреждению), заболеванию или отклонению в состоянии здоровья как самого работающего, так и последующих его поколений'. ПДУ хронического воздействия рассчитывают путем уменьшения в 5 10 раз ПДУ однократного воздействия. ПДУ при одновременном воздействии излучений с разными длинами волн устанавливают так: для кожи и передних сред глаза — в спектральных диапазонах I и III (длина волн 180 l 380 нм и 1400 l 10 5 нм соответственно); для сетчатки глаза — в диапазоне II (длина волн 380 l 1400 нм). В каждом из этих случаев действие различных источников считают аддитивным: (3.3) где n — число источников излучения, действие которых аддитивно, i — условный порядковый номер источника, — предельно допустимые значения энергии (или мощности) каждого источника; С i — относительный энерговклад каждого источника, определяемый как отношение энергии (мощности) источника с порядковым номером i к суммарной энергии (мощности) всех источников. 3.2.1. ПДУ лазерного излучения УФ диапазона Для УФ излучения с длиной волны l =180 380 нм (как коллимированного, так и рассеянного) при однократном воздействии на глаза и кожу человека нормируют H пду , E пду и W пду , Р пду . В этом спектральном диапазоне диаметр ограничивающей апертуры d a =1.1 10 -3 м. Поэтому (3.4) где ПДУ облучения зависит от длительности воздействия и длины волны Таблица 3.2 Предельные дозы при однократном воздействии на глаза и кожу коллимированного или рассеянного лазерного излучения
|