Приближенное вычисление определенного интеграла при помощи квадратурной формулы ЧебышеваТребуется найти определенный интеграл I = по квадратурной формуле Чебышева. Рассмотрим, что представляет из себя вообще квадратурная формула, и как можно с ее помощью вычислить приближенно интеграл. Известно, что определенный интеграл функции типа численно представляет собой площадь криволинейной трапеции ограниченной кривыми x =0 , y = a , y = b и y = (Рис. ). Рис. 1. Криволинейная трапеция. Если f ( x ) непрерывна на отрезке [ a , b ], и известна ее первообразная F( x ), то определенный интеграл от этой функции в пределах от а до b может быть вычислен по, известной всем, формуле Ньютона - Лейбница = F(b) - F(a) где F’( x ) = f ( x ) Однако во многих случаях F( x ) не может быть найдена, или первообразная получается очень сложной для вычисления. Кроме того, функция часто задается таблично. Поэтому большое значение приобретает приближенное и в первую очередь численное интегрирование. Задача численного интегрирования состоит в нахождении приближенного значения интеграла подинтегральной функции f ( x ) в некоторых точках ( узлах ) отрезка [ a , b ]. Численное определение однократного интеграла называется механической квадратурой, а соответствующие формулы численного интегрирования - квадратурными . Заменяя подинтегральную функцию каким-либо интерполционным многочленом, мы получим квадратурные формулы вида где x k - выбранные узлы интерполяции; A k - коэффициенты, зависящие только от выбора узлов, но не от вида функции ( k =0,1,2,........, n ). R - остаточный член, или погрешность квадратурной формулы. Отбрасывая остаточный член R, мы совершаем погрешность усечения. При расчете к ней добавляются еще различные погрешности округления. Разобьем отрезок интегрирования [ a , b ] на n равных частей системой точек x i = x o + i .. h ; ( i = 0,1,2,......,n) x o = a; x n = b; h= (b-a)/n ; и вычислим подинтегральную функцию в полученных узлах y i = f ( x i ) ; ( i = 0,1,2,......, n ) 1.2. Вывод формул численного интегрирования с использованием интерполяционного полинома Лагранжа Пусть для y = f ( x ) известны в n+1 точках X0,X1,X2..Xn промежутка [ a,b ] соответствующие значения f ( xi )= yi ( i =0,1,2..n). Требуется приближенно найти По заданным значениям Yi построим полином Лагранжа. Заменим f ( x ) полиномом Ln ( x ). Тогда где Rn ( f ) – ошибка квадратурной формулы. Отсюда, воспользовавшись выражением для Ln ( x ), получаем приближенную квадратурную формулу: Для вычисления коэффициентов Аi заметим что: 1.коэффициенты Ai при данном расположении узлов не зависит от выбора функции f ( x ); 2.для полинома степени n последняя формула точная. Пологая y = xK ( k =0,1,2..,n), получим линейную систему из n+1 уравнений: где ( k =0,1,..,n), из которой можно определить коэффициенты А0,А1,..,АN. Определитель системы есть определитель Вандермонда Заметим, что при применении этого метода фактическое построение полинома Лагранжа Ln ( x ) является излишним. Простой метод подсчета погрешности квадратурных формул разработан С.М. Никольским. Теперь рассмотрим несколько простейших квадратурных формул : 1.3 Формула трапеций и средних прямоугольников. Заменим дугу АВ стягивающей ее хордой, получим прямолинейную трапецию аАВb , площадь которой примем за приближенное значение интеграла
Соответственно получаем формулы площадей — для метода трапеций: для метода средних прямоугольников: 1.4. Общая формула Симпсона (параболическая формула) Пусть n =2m есть четное число и yi = f ( xi ) ( i =0,1,2... n ) - значения функции y = f ( x ) для равноотстоящих точек а=x0,x1, ... , xn = b с шагом Применив формулу Симпсона к каждому удвоенному промежутку [x0,x2], [x2,x4] ... [x2m-2,x2m] длины 2h и введя обозначения s 1 =y 1 +y 2 + ... +y 2m-1 s 2 =y 2 +y 4 + ... +y 2m получим обобщенную формулу Симпсона: Остаточный член формулы Симпсона в общем виде: где x k I (x 2к-2 ,x 2к ) 1.5. Квадратурная формула Чебышева Рассмотрим квадратурную формулу вида: функцию f ( x ) будем исать в виде когда f ( x ) многочлен вида f ( x )=a o +a 1 x+...+ a n x n . Проинтегрировав, преобразовав и подставив значения многочлена в узлах f(x 1 )=a 0 +a 1 x 1 +a 2 x 12 +a 3 x 13 +...+a n x 1n f(x 2 )=a 0 +a 1 x 2 +a 2 x 22 +a 3 x 23 +...+a n x 2n f(x 3 )=a 0 +a 1 x 3 +a 2 x 32 +a 3 x 33 +...+a n x 3n . . . . . . . . . . . . . . . . f( x n )=a 0 +a 1 x n +a 2 x n2 +a 3 x n3 +...+ a n x nn получим формулу Чебышева. Значения х1,х2,..,хn для различных n приведены в таблице 3. Таблица 3 – Значения х1,х2,..,хn для различных n .
Процедура VVOD - заполняет массив, содержащий в себе аргументы x i Процедура FORM - используя массив, содержащий аргументы x i заполняет массив y i Процедура CHEB - используя массивы x i и y i , высчитывает по квадратурной формуле Чебышева приближенное значение интеграла. |