Подобные работы

Интерполяция многочленами

echo "Функция у( х ) может участвовать в каких-либо физико-технических или чисто математических расчётах, где её приходится многократно вычислять. В этом случае выгодно заменить функцию у( х ) приближ

Решение задач - методы спуска

echo "Основная задача при выборе величины b k - это обеспечить выполнение неравенства j ( x k+1 ) j (x k ) . Одним из элементарных способов выбора шага является способ удвоения шага. Выбирают b k = b

Геометрия

echo "Например, выражение: «В D ABC сторона BC равна a , а в вершине A мы помещаем массу a » означает: «Длина стороны BC равна a , , я в вершине A , равна a грамм». Если в точке A помещена масса m , т

Теория вероятностей и математическая статистика

echo "Случайные числа, распределенные по закону Стьюдента с 10 степенями свободы: "; echo ''; echo " , где x – нормальная случайная величина, а c 2 – независимая от x величина, которая распределена по

Типичные дефекты в криптографических протоколах

echo "Однако стандарты быстро устаревают, а в протоколах обнаруживаются дефекты разной степени тяжести, начиная от недостатков типа необоснованной сложности протокола и до катастрофических недостатков

Математика

echo "Матричная запись линейной ситемы А=( Кооф .), Х=( неизв .), В=(св. чл.), =( кооф и св. члены) Невыражд . сист . |a11 a12 .. b1 .. a1m| = | кооф.| , k=| a21 a22 .. b2 .. a2m| |………………………………..| | a

Приближенное вычисление определенного интеграла при помощи квадратурной формулы Чебышева

echo "Требуется найти определенный интеграл I = "; echo ''; echo " по квадратурной формуле Чебышева. Рассмотрим, что представляет из себя вообще квадратурная формула, и как можно с ее помощью вычисли

Ряд Фурье

echo "Подобное колебание, называемое меандром, находит широкое применение в технике. Итак, "; echo ''; echo " Так как на практике мы не можем вычислить бесконечную сумму, проанализируем, как увеличени

Приближенное вычисление определенного интеграла при помощи квадратурной формулы Чебышева

Приближенное вычисление определенного интеграла при помощи квадратурной формулы Чебышева

Требуется найти определенный интеграл I = по квадратурной формуле Чебышева.

Рассмотрим, что представляет из себя вообще квадратурная формула, и как можно с ее помощью вычислить приближенно интеграл.

Известно, что определенный интеграл функции типа численно представляет собой площадь криволинейной трапеции ограниченной кривыми x =0 , y = a , y = b и y = (Рис. ). Рис. 1. Криволинейная трапеция. Если f ( x ) непрерывна на отрезке [ a , b ], и известна ее первообразная F( x ), то определенный интеграл от этой функции в пределах от а до b может быть вычислен по, известной всем, формуле Ньютона - Лейбница = F(b) - F(a) где F’( x ) = f ( x ) Однако во многих случаях F( x ) не может быть найдена, или первообразная получается очень сложной для вычисления. Кроме того, функция часто задается таблично.

Поэтому большое значение приобретает приближенное и в первую очередь численное интегрирование.

Задача численного интегрирования состоит в нахождении приближенного значения интеграла подинтегральной функции f ( x ) в некоторых точках ( узлах ) отрезка [ a , b ]. Численное определение однократного интеграла называется механической квадратурой, а соответствующие формулы численного интегрирования - квадратурными . Заменяя подинтегральную функцию каким-либо интерполционным многочленом, мы получим квадратурные формулы вида где x k - выбранные узлы интерполяции; A k - коэффициенты, зависящие только от выбора узлов, но не от вида функции ( k =0,1,2,........, n ). R - остаточный член, или погрешность квадратурной формулы.

Отбрасывая остаточный член R, мы совершаем погрешность усечения. При расчете к ней добавляются еще различные погрешности округления.

Разобьем отрезок интегрирования [ a , b ] на n равных частей системой точек x i = x o + i .. h ; ( i = 0,1,2,......,n) x o = a; x n = b; h= (b-a)/n ; и вычислим подинтегральную функцию в полученных узлах y i = f ( x i ) ; ( i = 0,1,2,......, n ) 1.2. Вывод формул численного интегрирования с использованием интерполяционного полинома Лагранжа Пусть для y = f ( x ) известны в n+1 точках X0,X1,X2..Xn промежутка [ a,b ] соответствующие значения f ( xi )= yi ( i =0,1,2..n). Требуется приближенно найти По заданным значениям Yi построим полином Лагранжа.

Заменим f ( x ) полиномом Ln ( x ). Тогда где Rn ( f ) – ошибка квадратурной формулы.

Отсюда, воспользовавшись выражением для Ln ( x ), получаем приближенную квадратурную формулу: Для вычисления коэффициентов Аi заметим что: 1.коэффициенты Ai при данном расположении узлов не зависит от выбора функции f ( x ); 2.для полинома степени n последняя формула точная.

Пологая y = xK ( k =0,1,2..,n), получим линейную систему из n+1 уравнений: где ( k =0,1,..,n), из которой можно определить коэффициенты А0,А1,..,АN. Определитель системы есть определитель Вандермонда Заметим, что при применении этого метода фактическое построение полинома Лагранжа Ln ( x ) является излишним.

Простой метод подсчета погрешности квадратурных формул разработан С.М. Никольским.

Теперь рассмотрим несколько простейших квадратурных формул : 1.3 Формула трапеций и средних прямоугольников.

Заменим дугу АВ стягивающей ее хордой, получим прямолинейную трапецию аАВb , площадь которой примем за приближенное значение интеграла

y-f(x)
B
y
A
0 a b x рис 1.3.1 Криволинейная трапеция Рис. 1.3.2. Метод трапеций. Рис. 1.3.3. Метод средних прямоугольников. По методам трапеций и средних прямоугольников соответственно интеграл равен сумме площадей прямоугольных трапеций, где основание трапеции какая-либо малая величина (точность), и сумма площадей прямоугольников, где основание прямоугольника какая-либо малая величина (точность), а высота определяется по точке пересечения верхнего основания прямоугольника, которое график функции должен пересекать в середине.

Соответственно получаем формулы площадей — для метода трапеций: для метода средних прямоугольников: 1.4. Общая формула Симпсона (параболическая формула) Пусть n =2m есть четное число и yi = f ( xi ) ( i =0,1,2... n ) - значения функции y = f ( x ) для равноотстоящих точек а=x0,x1, ... , xn = b с шагом Применив формулу Симпсона к каждому удвоенному промежутку [x0,x2], [x2,x4] ... [x2m-2,x2m] длины 2h и введя обозначения s 1 =y 1 +y 2 + ... +y 2m-1 s 2 =y 2 +y 4 + ... +y 2m получим обобщенную формулу Симпсона: Остаточный член формулы Симпсона в общем виде: где x k I (x 2к-2 ,x 2к ) 1.5. Квадратурная формула Чебышева Рассмотрим квадратурную формулу вида: функцию f ( x ) будем исать в виде когда f ( x ) многочлен вида f ( x )=a o +a 1 x+...+ a n x n . Проинтегрировав, преобразовав и подставив значения многочлена в узлах f(x 1 )=a 0 +a 1 x 1 +a 2 x 12 +a 3 x 13 +...+a n x 1n f(x 2 )=a 0 +a 1 x 2 +a 2 x 22 +a 3 x 23 +...+a n x 2n f(x 3 )=a 0 +a 1 x 3 +a 2 x 32 +a 3 x 33 +...+a n x 3n . . . . . . . . . . . . . . . . f( x n )=a 0 +a 1 x n +a 2 x n2 +a 3 x n3 +...+ a n x nn получим формулу Чебышева. Значения х1,х2,..,хn для различных n приведены в таблице 3. Таблица 3 – Значения х1,х2,..,хn для различных n .

n I t i n i t i
2 1;2 ± 0,577350 6 1;6 ± 0,866247
3 1;3 ± 0,707107 2;5 ± 0,422519
2 0 3;4 ± 0,266635
4 1;4 ± 0,794654 7 1;7 ± 0,883862
2;3 ± 0,187592 2;6 ± 0,529657
5 1;5 ± 0,832498 3;5 ± 0,321912
2;4 ± 0,374541 4 0
3 0
2. Решение контрольного примера где a =0 ; b = при n =5; f(x) = sin(x);
i x i y i
1 0,131489 0,131118
2 0,490985 0,471494
3 0,785 0,706825
4 0,509015 0,487317
5 0,868511 0,763367
x 1 = p /4+ p /4*t 1 = p /4+ p /4(-0,832498)=0,131489 x 2 = p /4+ p /4*t 2 = p /4+ p /4(-0,374341)=0,490985 x 3 = p /4+ p /4*t 3 = p /4+ p /4*0=0,785 x 4 =1- x 2 =1-0,490985 = 0,509015 x 5 =1- x 1 =1-0,131489=0,868511 y 1 =sin(x 1 ) = sin(0,131489)=0,131118 y 2 =sin(x 2 ) = sin(0,490985)=0,471494 y 3 =sin(x 3 ) = sin(0,785)=0,706825 y 4 =sin(x 4 ) = sin(0,509015)=0,487317 y 5 =sin(x 5 ) = sin(0,868511)=0,763367 I = p /10(0,131118+ 0,471494+0,706825+0,487317+0,763367) = = p /10*2,560121=0,8038779. 3. Описание программы Integral . pas . Алгоритм.

Процедура VVOD - заполняет массив, содержащий в себе аргументы x i Процедура FORM - используя массив, содержащий аргументы x i заполняет массив y i Процедура CHEB - используя массивы x i и y i , высчитывает по квадратурной формуле Чебышева приближенное значение интеграла.