Ряд ФурьеПодобное колебание, называемое меандром, находит широкое применение в технике. Итак, Так как на практике мы не можем вычислить бесконечную сумму, проанализируем, как увеличение числа слагаемых влияет на приближение. При этом мы сталкиваемся с явлением Гиббса.
Действительно, явление Гиббса мы можем наблюдать и при приближении пилообразного сигнала с помощью рядов Фурье. С пилообразными колебаниями часто приходится сталкиваться в устройствах для развёртки изображения в осциллографах. Заметим, что при увеличении числа слагаемых в рядах Фурье, приближение улучшается (уменьшается глубина колебаний). Это наглядно показывают графики, приведённые в конце. Задача следующего этапа этой работы - фильтрация зашумлённого сигнала с помощью быстрых преобразований Фурье (БПФ). Рассмотрим произвольный сигнал. В данном случае он задан как На практике почти всегда имеют дело с зашумлённым сигналом. Поэтому наложим на сигнал некоторый шум. Теперь попробуем очистить наш сигнал от шумов. Для этого применим БПФ, а затем цифровой фильтр. Итак, если использовать комплексное представление тригонометрических функций то получим , где Легко видеть, что ( a k и b k - коэффициенты разложения в ряд Фурье) Комплексная форма ряда Фурье удобнее в обращении при теоретических исследованиях, но вычисления проводятся с действительной формой. В комплексной форме существуют и положительные и отрицательные частоты: для каждой положительной частоты мы заменили две функции, синус и косинус, единой экспоненциальной, но имеющей как положительную, так и отрицательную частоту. Покажем, что соответственно представлению рядам Фурье периодической функции имеется представление интегралом Фурье любой функции , где Функция F( s ) , грубо говоря, соответствует коэффициентам c л в ряде Фурье. Это - спектральная функция (спектральная плоскость); F( s ) описывает амплитуду частоты ( s ) в функции f(t) . Говорят, что функция F( s ) является преобразованием Фурье функции f(t) . Обе функции несут одну и ту же информацию, так как каждая может быть найдена из другой, но только в разных формах: : f(t) в области времени, а F( s ) в области частот. Итак, возвращаясь к нашей задаче, переведём сигнал из временной области в частотную. После этого применим цифровой фильтр. С помощью этого фильтра мы отбрасываем шумовые составляющие сигнала, оставляя частотные составляющие. Но нужно заметить, что пытаясь избавится от шумовых составляющих сигнала, мы невольно отбрасываем часть частотных. чем выше порог фильтрации, тем меньше шума мы получаем, но в то же время мы теряем всё большую часть полезной информации, то есть сигнал искажается. В этом я убедился на практике. Чем выше был порог шума, тем более «гладкой» была очищенная функция, но при наложении на неё исходного незашумлённого сигнала можно было убедиться в значительных расхождениях. И наоборот, чем ниже был порог шума, тем функция была менее «гладкой», но совпадение с исходным сигналом было лучше. При выборе определённого порога фильтрации нельзя не учитывать этот факт. Чтобы определить величину этого параметра прежде всего нужно руководствоваться особенностями поставленной задачи. Фурье-анализ.
Непосредственно видно, что коэффициенты Фурье a k и b k не обладают этими свойствами и меняются при сдвиге оси, то есть когда изменяется начало отсчёта времени. |