Подобные работы

Методы активации химических процессов

echo "Изучением взаимодействия мощных акустических волн с веществом и возникающих при этом химических и физико-химических эффектов занимается звукохимия. Изначально вопросы такого рода относились к о

Поняття про нитратни и фосфатни добрива

echo "Найпоширенішіми нітратними добривами є аміачна вода і аміачна селітра. Аміачна вода – розчин аміака у воді. Одержують аміачнуводу, насичуючи воду аміаком до кончентрації 20 – 22 % NH 3 . Застосо

Подгруппа углерода. Углерод

echo "Главную подгруппу IV группы периодической системы Д. И. Менделеева образуют пять элементов - углерод, кремний, германий, олово и свинец. В связи с тем, что от углерода к свинцу радиус атома увел

Способы кристаллизации

echo "Поэтому при охлаждении горячих растворов возникает пересыщение, обусловливающее выделение кристаллов. Этот метод также получил название изогидрической кристаллизации, поскольку при его осуществл

Производство серной кислоты нитрозным способом

echo "Полученный SO 2 окисляют до H 2 SO 4 , используется для этого в нитрозном методе используется окислы азота. С этой стадии оба метода отличаются друг от друга. В специальной окислительной башне 3

История получения цинка, его химические св-ва и применение цинка в промышленности

echo "Атомный вес - 65,37. Распределение электронов по слоям 2-8-18-2. Цинк представляет собой синевато - белый металл, плавящийся при 419 С, а при 913 С превращающийся в пар; плотность его равна 7,14

Металлы. Свойства металлов

echo "Учитель: Белокопытов Ю.С. Июнь 1999 г.Чехов. Содержание. 1. Строение атомов металлов. Положение металлов в периодической системе. Группы металлов..................2 2. Физические свойства мет

Химическая термодинамика

echo "Величина энергии отдельной химической связи очень мала. Её удобно выражать в электронвольтах на атом. Поскольку обычно в реакциях участвуют относительно большие количества веществ, то общие кол

Неорганические аниообменники, синтезированные на основе гидроксидов металлов

Неорганические аниообменники, синтезированные на основе гидроксидов металлов

Разобраны кинетика и термодинамика ионного обмена на гидроксидных ионитах. На обширном экспериментальном материале сделаны выводы о механизме сорбции и предложены модели, описывающие этот процесс.

Показана возможность применения гидроксидных материалов в качестве неорганических ионитов в аналитической химии, химической технологии и промышленной экологии.

Селективность таких ионообменников позволяет использовать их как при разделении смесей, так и для извлечении из сложного раствора какого-то одного конкретного иона. ГИДРОКСИДЫ МЕТАЛЛОВ, ОБЛАДАЮЩИЕ БРУСИТОВОЙ СТРУКТУРОЙ Большая часть статей посвящена изучению анионообменных свойств гидроксидов металлов, имеющих слоистую структуру типа брусита. В настоящее время их выделяют в отдельную группу соединений. Для них характерно построение кристаллической решетки из отдельных слоев, соединенных водородными связями или силами Ван-дер-Ваальса.

Внедрение анионов в межслоевые пространства таких гидроксидов происходит на основе нуклеофильного замещения функциональных гидроксогрупп. Важно, что гидроксиды различных металлов со слоистой структурой могут образовывать твердые растворы замещения, обладающие рядом ценных ионообменных свойств.

Представленные публикации отражают современный уровень исследований по этой проблеме в мировой практике.

Рис. Мотив решетки гидроксидов металлов со слоистой структурой типа брусита. В работах [1-2, 5-7] указывается на возможность использования в качестве анионообменных материалов так называемых слоистых двойных гидроксидов (СДГ). Cтруктура СДГ (M 2+ 1-x M 3+ x (OH) 2 [(anion n- ) x/n . mH 2 O]) состоит из положительно заряженных гидроксидных слоев (M 2+ 1-x M 3+ x (OH) 2 ) x + и анионов, находящихся в межслоевом пространстве.

Интерес исследователей к этому классу соединений обусловлен возможностью вариации их свойств путем замещения анионов в межслоевом пространстве или атомов металла в гидроксидном слое. МЕТОДЫ ИССЛЕДОВАНИЯ В исследованиях широко применяются химические и физико-химические методы анализа. К наиболее часто используемым методам относятся инфракрасная спектроскопия, рентгенофазовый анализ, атомно-абсорбционная спектроскопия и термогравиметрический анализ. Так, результаты рентгенофазового анализа свидетельствуют о возможности расширения межслоевых пространств гидроксидов при интеркаляции в них различных анионов.

Например, в статье [1] показано, что при внедрении в Mg - Al СДГ терефталат-анионов происходит изменение параметра решетки С от 9 до 14 . Это позволяет извлекать гидроксидными ионитами из растворов достаточно крупные анионы.

Инфракрасная спектроскопия использована для анализа состояния анионов в составе различных гидроксидов.

Например, приведены инфракрасные спектры поглощения продуктов сорбции нитрат-ионов на гидроксидах таких металлов, как Zn , Cu , Ni и La [6]. Атомно-абсорбционный анализ применяется во многих работах, например, в [4] при определении концентраций ионов в растворах.

Термогравиметрический анализ позволяет проследить процессы, происходящие при нагревании гидроксидных материалов.

Примером применения термогравиметрии может служить исследование, проведенное в работе [6]. Здесь проанализирована устойчивость к нагреванию терефталатных, ацетатных и бензоатных производных от соединений вида: Zn 5 ( OH ) 8 ( NO 3 ) 2 ·2 H 2 O , Cu 2 ( OH ) 3 NO 3 и La ( OH ) 2 NO 3 · H 2 O . Полученные экспериментально кривые DTA показывают температуру, при которой начинается термическое разложение первоначально взятых образцов и глубокая перестройка структуры соединений.

Кривые DTG отражают потерю массы образца при нагревании.

Показано, что потеря массы твердой фазы происходит за счет отделения при высокой температуре таких легколетучих веществ, как H 2 O , CO 2 , NO и др.