Лекции по общей физикеТрадиционно рассматриваются лишь некоторые частные случаи такой зависимости. Например, пластина может иметь форму клина. У показанной на рисунке пластины толщина зависит от координаты x: Для соседних максимумов, очевидно, D k=1 , и мы имеем для ширины интерференционной полосы: Мы, вроде, получили новую формулу, но, оказывается, она нам знакома. Действительно, после отражения от поверхностей и преломления лучи 1 и 2 расходятся под углом q =2 a n , мы же при анализе интерференции волн от двух точечных источников получили для ширины интерференционной полосы выражение
Теперь же эти волны (1 и 2) после отражения от двух поверхностей расходятся под углом q . Возникает вопрос, где же они интерферируют друг с другом или, как принято выражаться, где локализованы интерференционныу полосы. Ответ на этот вопрос поясняется рисунком. Для наблюдения интерференции отраженных от поверхностей пластины (клина) волн используется линза и экран, на котором создается изображение поверхности локализации интерференционных полос. Эта последняя образована точками пересечения продолжений луча 1 (он “начинается” от верхней поверхности пластины) и луча 2 после его преломления. Другая традиционно рассматриваемая задача - кольца Ньютона. Это также линии равной толщины, но роль пластины здесь играет воздушный промежуток между плоской поверхность стеклянной, например, пластины и выпуклой поверхностью плосковыпуклой линзы.
Поэтому условие максимума будет При таких значениях радиуса r будут наблюдаться максимумы. Очевидно, минимумы будут при В этих выражениях k - целое. Эти выражения для радиусов колец Ньютона можно объединить в одно: Теперь нечетным значениям k соответствуют светлые кольца, четным - темные. 8.6. Интерферометры 8.6.1. Интерферометр Линника Собственно, интерферометр Линника представляет собой слегка видоизмененный интерферометр Майкельсона и может быть назван и так и этак. Мы здесь обсудим не столько его устройство, сколько его применение для определения качества обработки поверхностей.
Нижняя поверхность первой пластины представляет собой полупрозрачное зеркало, на котором происходит разделение лучей: часть света (луч 1) отражается вверх, отражается от исследуемой поверхности и после отражения от нижнего зеркала З” направляется в окуляр (на рисунке не показан), через который и наблюдается интерференционная картина. После прохождения пластины p 1 луч 2 направляется к зеркалу З, отражается от него, затем от полупрозрачного зеркала и вместе с лучем 1 направляется к наблюдателю. Луч 1 после отражения от полупрозрачного зеркала и на обратном пути дважды проходит через пластину p 1 , “набирая” тем самым некоторую “лишнюю” разность хода. Для ее компенсации служит пластина p 2 , изготовленная из того же материала, что и первая. Разумеется, эту “лишнюю разность хода” можно было бы легко скомпенсировать простым перемещением зеркала, если бы не было дисперсии, зависимости коэффициента преломления от длины волны n( l ) . Применение компенсирующей пластины p 1 позволяет осуществить такую компенсацию сразу для всех длин волн. Почему образуется интерференционная картина и как она выглядит помогает понять укрупненный фрагмент рисунка слева вверху. Реальный луч 2 и его отражение от зеркала З можно заменить лучем 2’ и его “отражением” от изображения зеркала З в полупрозрачном зеркале - З’. Это изображение и исследуемая поверхность образуют клин, пластину изменяющейся толщины. Соответственно, через окуляр наблюдаются интерференционные линии равной толщины - прямые, направленные перпендикулярно плоскости рисунка. И эти линии видны искривленными, если исследуемая поверхность не вполне плоская. При “идеально” плоской поверхности это прямые линии. Ту же мысль можно сформулировать и иначе. При отражении от идеально плоских поверхностей волны остаются плоскими, и фронты волн 1 и 2 составляют между собой угол 2 a , если угол между исследуемой поверхностью и изображением зеркала З’ равен a . Если исследуемая поверхность обработана некачественно, волна 1 уже не будет плоской, интерференционная картина исказится. Чрезвычайно простой в эксплуатации, такой интерферометр позволяет обнаружить весьма небольшие неровности на исследуемой поверхности - порядка долей длины волны. 8.6.2. Интерферометр Рэлея Показатель преломления воздуха, как и других газов, при условиях, близких к “нормальным”, мало отличается от единицы. Должно быть понятным, что для измерения такой величины показателя преломления необходим достаточно точный метод. Такого рода измерения могут быть произведены с помощью интерферометра Рэлея.
Источником света служит освещаемая достаточно удаленным источником щель S, от которой распространяется цилиндрическая волна. С помощью линзы волна преобразуется в плоскую волну: лучи 1 и 2 становятся параллельными. Они проходят через кюветы, длины которых l могут быть достаточно велики. Если показатели преломления газов в кюветах одинаковы, интерференционная полоса (максимум) с нулевой разностью хода помещается в центре экрана при x=0. Заметим - выше ее (на рисунке) расположатся линии (максимумы), для которых оптическая длина пути нижнего луча больше. Если верхняя кювета заполняется газом с несколько большим показателем преломления, оптическая длина пути луча 1 на протяжении кюветы станет больше и линия с нулевой разностью хода (“центральная”) сместится вверх.
Причина образования интерферационной картины становится не очень понятной, непонятно, чем определяется ширина полосы. Но все это не так загадочно, как может показаться. Два точечных источника представляют собой частный случай периодического расположения источников, рассмотренный нами раньше. Заметив, что мы ограничимся лишь малыми значениями углов q , повторим для пары источников проведенные ранее рассуждения. При q =0 , естественно, будет наблюдаться максимум. Следующий максимум будет при значении q , которое определяется условием
Устройство звездного интерферометра Майкельсона показано не рисунке. Лучи света, пришедшего от удаленной звезды, отражается от зеркал, разнесенных на достаточно большое расстояние D, затем от двух других зеркал и собираются линзой на экране, помещенном в фокальной плоскости. Разнесенные на расстояние D зеркала можно рассматривать как точечные источники, расстояние между которыми и равно D.
Коэффициент отражения границы стекло - воздух r =I 1 /I 0 невелик, несколько процентов. Обозначив интенсивность падающего луча как I 0 , для интенсивностей других лучей мы получим такие значения: I 1 =I 0 r ; I 2 =I 0 (1- r ) 2 r ; I 3 =I 0 (1- r ) 2 r 4 ; I 1’ =I 0 (1- r ) 2 ; I 2’ =I 0 (1- r ) 2 r 2 ; I 3’ =I 0 (1- r ) 2 r 4 . Получаются эти выражения таким образом. Если коэффициент отражения r , то коэффициент прохождения, как это следует из закона сохранения энергии, равен (1- r ) . При определении интенсивности каждого луча интенсивность I 0 следует умножить на коэффициент отражения и на коэффициент прохождения в степени, равной числу отражений и пересечения границы раздела соответственно. При малом коэффициенте отражения получается поэтому для отраженных и прошедших через пластинку лучей: I 1 » I 2 ; I 3 I 2 ; I 3’ I 2’ I 1’ . Поэтому при сложении отраженных лучей мы учитываем только два луча - 1 и 2, интенсивности которых различаются несильно. Поэтому интенсивность в минимумах близка к нулю. В проходящем свете также будет наблюдаться интерференционная картина, но из-за быстрого уменьшения интенсивности участвующих в интерференции лучей отношение интенсивности в максимуме и в минимуме различаются незначительно.
Благодаря этому достигается большое значение коэффициента отражения r - теперь он отличается от единицы лишь на несколько процентов, а коэффициент прохождения (1- r ) оказывается малым. Это существенно изменяет соотношения между интенсивностями лучей: I 1 >> I 2 » I 3 ; I 1’ » I 2’ » I 3’ . При таких соотношениях при обсчете углового распределения интенсивности проходящего света необходимо учитывать много (все) проходящие через интерферометр лучи. В этом случае интерференция называется многолучевой. |