Подобные работы

Опыты Резерфорда

echo "Электроны, как думал Томсон, вкраплены в сверхминиатюрную сферу диаметром 10 –8 см., в которой равномерно распределены положительные заряды. Вместе с отрицательно заряженными электронами сфера

Примерные экзаменационные билеты по физике (11 класс)

echo "Система отсчета. Материальная точка. Траектория. Путь и перемещение. Мгновенная скорость. Ускорение. Равномерное и равноускоренное движение. 2) Задача на применение закона сохранения массов

Справочник по физике

echo "Механика делится на три раздела: кинематику, динамику, статику. Кинематика изучает движение тел, не рассматривая причин, которые это движение обусловливают. Динамика изучает законы движения те

Исследование электрических колебаний (№27)

echo "Теоретическая часть. Рисунок 1. Уравнение, которому удовлетворяет ток I в колебательном контуре (рис.1) с подключенным к нему генератором синусоидальной ЭДС e = e 0 cos w t имеет вид: ";

Торсионные поля. Торсионные технологии

echo "Торсионное поле, как объект науки. Его определение. Какие свойства торсионных полей можно выделить? Полтергейст как проявление бессознательного. Торсионное поле - материя или идея? Торсионные т

Синергетика как наука о самоорганизации

echo "Эволюционные процессы представляют собой разновидность динамических процессов (процессов протекающих во времени). В физике описание динамических процессов осуществляется с помощью систем диффере

Системный подход при изучении физической картины мира

echo "Маленький ребенок в определенных ситуациях стремится узнать, как действует или происходит то или иное явление: как с грохотом падает ваза или как рвется страничка книги, как включается телевизор

Изучение основных правил работы с радиоизмерительными приборами (№23)

echo "Выполнил студент Группы 99 – ЭТУ Наумов Антон Николаевич Проверил: Н. Новгород 2000г. Цель работы : знакомство с основными характеристиками радиоизмерительных приборов, правилами их подключения

Лекции по общей физике

Лекции по общей физике

Традиционно рассматриваются лишь некоторые частные случаи такой зависимости.

Например, пластина может иметь форму клина. У показанной на рисунке пластины толщина зависит от координаты x: Для соседних максимумов, очевидно, D k=1 , и мы имеем для ширины интерференционной полосы: Мы, вроде, получили новую формулу, но, оказывается, она нам знакома.

Действительно, после отражения от поверхностей и преломления лучи 1 и 2 расходятся под углом q =2 a n , мы же при анализе интерференции волн от двух точечных источников получили для ширины интерференционной полосы выражение

экран изображ. поверхности 1 2 локализации линза 1 2 поверхность локализации пластина
При интерференции волн от двух точечных источников волны реально, “на самом деле” взаимодействуют, складываются на поверхности экрана.

Теперь же эти волны (1 и 2) после отражения от двух поверхностей расходятся под углом q . Возникает вопрос, где же они интерферируют друг с другом или, как принято выражаться, где локализованы интерференционныу полосы. Ответ на этот вопрос поясняется рисунком. Для наблюдения интерференции отраженных от поверхностей пластины (клина) волн используется линза и экран, на котором создается изображение поверхности локализации интерференционных полос. Эта последняя образована точками пересечения продолжений луча 1 (он “начинается” от верхней поверхности пластины) и луча 2 после его преломления.

Другая традиционно рассматриваемая задача - кольца Ньютона. Это также линии равной толщины, но роль пластины здесь играет воздушный промежуток между плоской поверхность стеклянной, например, пластины и выпуклой поверхностью плосковыпуклой линзы.

R d(r) r
Пусть угол между вертикалью и прямой, проведенной из центра кривизны к некоторой точке выпуклой поверхности линзы с координатой r, равен a . Тогда Показатель преломления в промежутке между стеклянными поверхностями можно считать равным единице.

Поэтому условие максимума будет При таких значениях радиуса r будут наблюдаться максимумы.

Очевидно, минимумы будут при В этих выражениях k - целое. Эти выражения для радиусов колец Ньютона можно объединить в одно: Теперь нечетным значениям k соответствуют светлые кольца, четным - темные. 8.6. Интерферометры 8.6.1. Интерферометр Линника Собственно, интерферометр Линника представляет собой слегка видоизмененный интерферометр Майкельсона и может быть назван и так и этак. Мы здесь обсудим не столько его устройство, сколько его применение для определения качества обработки поверхностей.

З’ исслед. a 2 a поверхн. 1 2’ 1 p 1 P 2 З 2 линза 1,2 З”
Основу интерферометра составляют две стеклянные пластины p 1 и p 2 и два зеркала, одним из которых служит исследуемая поверхность.

Нижняя поверхность первой пластины представляет собой полупрозрачное зеркало, на котором происходит разделение лучей: часть света (луч 1) отражается вверх, отражается от исследуемой поверхности и после отражения от нижнего зеркала З” направляется в окуляр (на рисунке не показан), через который и наблюдается интерференционная картина. После прохождения пластины p 1 луч 2 направляется к зеркалу З, отражается от него, затем от полупрозрачного зеркала и вместе с лучем 1 направляется к наблюдателю. Луч 1 после отражения от полупрозрачного зеркала и на обратном пути дважды проходит через пластину p 1 , “набирая” тем самым некоторую “лишнюю” разность хода. Для ее компенсации служит пластина p 2 , изготовленная из того же материала, что и первая.

Разумеется, эту “лишнюю разность хода” можно было бы легко скомпенсировать простым перемещением зеркала, если бы не было дисперсии, зависимости коэффициента преломления от длины волны n( l ) . Применение компенсирующей пластины p 1 позволяет осуществить такую компенсацию сразу для всех длин волн.

Почему образуется интерференционная картина и как она выглядит помогает понять укрупненный фрагмент рисунка слева вверху.

Реальный луч 2 и его отражение от зеркала З можно заменить лучем 2’ и его “отражением” от изображения зеркала З в полупрозрачном зеркале - З’. Это изображение и исследуемая поверхность образуют клин, пластину изменяющейся толщины.

Соответственно, через окуляр наблюдаются интерференционные линии равной толщины - прямые, направленные перпендикулярно плоскости рисунка. И эти линии видны искривленными, если исследуемая поверхность не вполне плоская. При “идеально” плоской поверхности это прямые линии. Ту же мысль можно сформулировать и иначе. При отражении от идеально плоских поверхностей волны остаются плоскими, и фронты волн 1 и 2 составляют между собой угол 2 a , если угол между исследуемой поверхностью и изображением зеркала З’ равен a . Если исследуемая поверхность обработана некачественно, волна 1 уже не будет плоской, интерференционная картина исказится.

Чрезвычайно простой в эксплуатации, такой интерферометр позволяет обнаружить весьма небольшие неровности на исследуемой поверхности - порядка долей длины волны. 8.6.2. Интерферометр Рэлея Показатель преломления воздуха, как и других газов, при условиях, близких к “нормальным”, мало отличается от единицы.

Должно быть понятным, что для измерения такой величины показателя преломления необходим достаточно точный метод.

Такого рода измерения могут быть произведены с помощью интерферометра Рэлея.

x 1 S 0 2 l экран
По существу схема получения интерференционной картины в этом случае насильно отличается от классического опыта Юнга.

Источником света служит освещаемая достаточно удаленным источником щель S, от которой распространяется цилиндрическая волна. С помощью линзы волна преобразуется в плоскую волну: лучи 1 и 2 становятся параллельными. Они проходят через кюветы, длины которых l могут быть достаточно велики. Если показатели преломления газов в кюветах одинаковы, интерференционная полоса (максимум) с нулевой разностью хода помещается в центре экрана при x=0. Заметим - выше ее (на рисунке) расположатся линии (максимумы), для которых оптическая длина пути нижнего луча больше. Если верхняя кювета заполняется газом с несколько большим показателем преломления, оптическая длина пути луча 1 на протяжении кюветы станет больше и линия с нулевой разностью хода (“центральная”) сместится вверх.

x 1 S d 0 2 f экран
Изображенная на предыдущем рисунке схема интерферометра Рэлея заимствована из задачника Иродова. При такой схеме ширина интерференционной полосы определяется выражением Реальный интерферометр Рэлея устроен несколько иначе: за диафрагмой устанавливается линза, в фокальной плоскости которой и наблюдается интерференционные полосы (с помощью окуляра с достаточным увеличением). Но тогда угловое расстояние между источниками становится нулевым, интерферировать должны параллельные лучи.

Причина образования интерферационной картины становится не очень понятной, непонятно, чем определяется ширина полосы. Но все это не так загадочно, как может показаться. Два точечных источника представляют собой частный случай периодического расположения источников, рассмотренный нами раньше.

Заметив, что мы ограничимся лишь малыми значениями углов q , повторим для пары источников проведенные ранее рассуждения. При q =0 , естественно, будет наблюдаться максимум.

Следующий максимум будет при значении q , которое определяется условием

D x d q q D L q f экран
и ширина полосы на экране Эти уточнения и расчеты помогут нам понять принцип работы другого интерферометра, о котором речь пойдет ниже. Но обратите внимание на то, что ширина максимума на экране определяется их угловой шириной, которую надо умножить на фокусное расстояние линзы. 8.6.3. Звездный интерфероментр Майкельсона Если угловое расстояние между двумя звездами очень мало, в телескоп они видны как одна звезда. В таком случае говорят о двойных звездах и надо провести специальное наблюдение, чтобы отличить их от звезд одиночных. Для этого используется звездный интерферометр Майкельсона, который позволяет к тому же определить угловое расстояние между звездами.

Устройство звездного интерферометра Майкельсона показано не рисунке. Лучи света, пришедшего от удаленной звезды, отражается от зеркал, разнесенных на достаточно большое расстояние D, затем от двух других зеркал и собираются линзой на экране, помещенном в фокальной плоскости.

Разнесенные на расстояние D зеркала можно рассматривать как точечные источники, расстояние между которыми и равно D.

D q q линза D x 0 X
Воспользуемся полученным ранее выражением для углового распределения максимумов излучения света Иначе говоря, На экране будут наблюдаться максимумы на расстояниях друг от друга. Если наблюдаются две близкие звезды, лучи света от которых приходят под малым углом j , то на экране будут наблюдаться две интерференционные картины, сдвинутые по отношению друг к другу на расстояние j между звездами производится следующим образом. При изменении величины D изменяется видимость интерференционной картины ухудшится или она вообще не будет наблюдаться. Это позволяет определить угловое расстояние между звездами:
D q E 0 j 0 q
На рисунке показано именно такое взаимоположение интерференционных картин, интенсивность излучения одной из звезд несколько больше. При изменении расстояния между зеркалами изменяется величина D q . Таким способом можно определить весьма малые угловые расстояния j . 8.6.4. Интерферометр Фабри-Перо
1 2 3 n=1 n>1 1’2’3’
Интерференция лучей отразившихся от поверхностей плоскопараллельной пластины называется двухлучевой. И для такого названия имеется основание.

Коэффициент отражения границы стекло - воздух r =I 1 /I 0 невелик, несколько процентов.

Обозначив интенсивность падающего луча как I 0 , для интенсивностей других лучей мы получим такие значения: I 1 =I 0 r ; I 2 =I 0 (1- r ) 2 r ; I 3 =I 0 (1- r ) 2 r 4 ; I 1’ =I 0 (1- r ) 2 ; I 2’ =I 0 (1- r ) 2 r 2 ; I 3’ =I 0 (1- r ) 2 r 4 . Получаются эти выражения таким образом. Если коэффициент отражения r , то коэффициент прохождения, как это следует из закона сохранения энергии, равен (1- r ) . При определении интенсивности каждого луча интенсивность I 0 следует умножить на коэффициент отражения и на коэффициент прохождения в степени, равной числу отражений и пересечения границы раздела соответственно. При малом коэффициенте отражения получается поэтому для отраженных и прошедших через пластинку лучей: I 1 » I 2 ; I 3 I 2 ; I 3’ I 2’ I 1’ . Поэтому при сложении отраженных лучей мы учитываем только два луча - 1 и 2, интенсивности которых различаются несильно.

Поэтому интенсивность в минимумах близка к нулю. В проходящем свете также будет наблюдаться интерференционная картина, но из-за быстрого уменьшения интенсивности участвующих в интерференции лучей отношение интенсивности в максимуме и в минимуме различаются незначительно.

d
q q 1 2 3 4
Устройство интерферометра Фабри-Перо показано на рисунке. Роль пластинки играет воздушный промежуток между двумя прозрачными пластинами, на внутренних поверхности которых напылен тонкий слой металла.

Благодаря этому достигается большое значение коэффициента отражения r - теперь он отличается от единицы лишь на несколько процентов, а коэффициент прохождения (1- r ) оказывается малым. Это существенно изменяет соотношения между интенсивностями лучей: I 1 >> I 2 » I 3 ; I 1’ » I 2’ » I 3’ . При таких соотношениях при обсчете углового распределения интенсивности проходящего света необходимо учитывать много (все) проходящие через интерферометр лучи. В этом случае интерференция называется многолучевой.